Chapter 5;
Structural Modeling

Objectives

* Understand the rules and style guidelines for creating
CRC cards, class diagrams, and object diagrams.

* Understand the processes used to create CRC cards,
class diagrams, and object diagrams.

* Be able to create CRC cards, class diagrams, and
object diagrams.

* Understand the relationship among structural models.

* Understand the relationship between structural and
functional models.

Introduction

® Functional models represent system behavior
® Structural models represent system objects and their
relationships:
® People
® Places
® Things
® Create a conceptual model and evolve it into a design
model using
® CRC cards
® (Class diagrams
® Object diagrams

Structural Models

® Drawn using an iterative process
® First drawn in a conceptual, business-centric way

® Then refined in a technology-centric way describing the
actual databases and files

® More and more detail is added in each iteration

® Create a vocabulary for analysts & users
® Allows effective communication between analysts & users

Structural Models

Main goal: to discover the key data contained in the
problem domain and to build a structural model of the
objects

Solution Domain

Classes, Attributes, &

Box

-volume
- material

+fill {)
+empty ()

Operations

® (Classes

/ *Templates for instances of
people, places, or things

~'fjﬂ’ffffi'i:':;ii’jjj'i':::i;f e Attributes
*Properties that describe the

state of an instance of a class
(an object)

® QOperations

e Actions or functions that a
class can perform

Relationships

® Describe how classes relate to one another

® Three basic types in UML

= (Generalization
Enables inheritance of attributes and operations
Represents relationships that are “a-kind-of”
= Aggregation
Relates parts to wholes
Represents relationships that are “a-part-of”

= Association

* Miscellaneous relationships between classes

~© Usually a weaker form of aggregation

ion for Dennis, Wixom, & Tegarde

Object Identification

¢ Textual analysis of use-case information
® Nouns suggest classes
® \erbs suggest operations
® (Creates a rough first cut to provide an object list

® Brainstorming—ypeople offering ideas
® |nitial list of classes (objects) is developed

® Attributes, operations and relationships to other classes
can be assigned in a second round

Obiject ldentification (cont.)

® Common Object Lists
® Physical things
® |ncidents
® Roles
® [nteractions
* Patterns

® Useful groupings of collaborating classes that provide
solutions to common problems (are reusable)

® Developed patterns provide a starting point for work in
similar domains

is, Wixom, & Tegarden

CRC Cards

® |ndex cards used to document the responsibilities and
collaborations of a class
® Responsibilities
® Knowing—what a class must know manifested as
attributes
® Doing—what a class must do manifested later as
operations
¢ Collaboration
® (Objects working together to service a request:
® Requestor (client)
®* Responder (server)
- ® Bound by a contract

Front-Side of a CRC Card

Class Name: Patient 1D: 3 Tvpe: Concrete, Domain

Descriphion: An individual that needs to receive or has received Associated Use Cases: 2
medical attention

Responsibilities Collaborators
Make appointment Appointment
Calculate last visit
Change status
Provide medical history Medical history

Back-Side of a CRC Card

Attributes:
Amount (douable)

Insurance carrier (text)

Relationships:

Generalization (a-kind-of): Person

Aggregation (has-parts): Medical History

Other Associations: Appointment

CRC Cards & Role-Playing

® An exercise to help discover additional objects,
attributes, relationships & operations

® Team members perform roles associated with the
actors and objects previously identified

e Utilize activity diagrams to run through the steps in a
scenario

® |dentify an important use-case

® Assign roles based on actors and objects

® Team members perform each step in the scenario
[J

Discover and fix problems until a successful conclusion is
reached

® Repeat for remaining use-cases

ennis, Wixom, & Tegarden Systems Analysis a

Class Diagrams

e A static model that shows classes and their
relationships to one another

® Elements
® (lasses

® Objects within the system (a person, place or thing)

® Stores and manages information in the system and contains:
® Attributes—characteristics of the class

® QOperations—activities the class can perform
® Relationships—the associations between classes
® Depicted as lines between classes

® Multiplicity indicates how many of one object is/are
associated with other objects

Attributes

® Properties of a class
® Person: last name, first name, address, etc.
® Attributes can be derived
® Preceded with a slash (/)
® e.g., age is derived from date of birth
® Visibility of an attribute:
® Restricts access to attributes to ensure consistency
® Public attributes (+): visible to all classes

® Private attributes (-): visible only to an instance of the
class in which they are defined

® Protected attributes (#): visible only to an instance of the
- class in which they are defined and its descendant

ion for Dennis, Wixom, & Tegarden

Operations

® Common operations are not shown
® Create or delete an instance
® Return or set a value

® Types of operations:
® (Constructor—creates an object

® Query—makes information about the state of an object
available

® Update—changes values of some or all of an object’s
attributes

® Destructor—deletes or removes an object

Relationships

® Denotes associations between classes

® Depicted with a line labeled with the name of the
relationship
® May be directional (depicted with a triangle; e.g., a patient
schedules an appointment)
® Classes may be related to themselves (e.g., employees
and managers who may be members of the same
class)
® Multiplicity indicates how many of one class are related
to another class

Multiplicities

Department Boss Exactly one:
A department has one
and only one boss

Zero or more:
\

| | An employee has zero

1 0" to many children

Employee One or more:
A boss is responsible for

one or more employees

Association Classes

® Common in many-to-many relationships

® Used when attributes about the relationship between
two classes needs to be recorded

® Students are related to courses; a Grade class provides
an attribute to describe this relationship

® |linesses are related to symptoms; a Treatment class
provides an attribute to describe this relationship

Generalization & Aggregation
Associations

® (Generalization denotes inheritance

® Properties and operations of the superclass are valid for
the sub-class

® Depicted as a solid line with a hollow arrow pointing at the
superclass

® Aggregation denotes a logical “a-part-of” relationship
® Composition denotes a physical “a-part-of” relationship

Sample Class D

lagram

has »

cortains »

Debit Aime 1.1 1°
has » o s
1.1 o L | reason
1. L[scancel without noticel)
0r 1.1
¢ AssigredTo a*
_ locatedAt » | 0.
Jatrame
Sfirtrame -
address .g
T i
./'
o 1.
suffers »
~amourt 0. 1.
-insurance carrier
o +make appointm entf) provides »
1.1 | *calculate last visiv)
schange statusl) sl 01
+provides medical higtory()
+ primary
in:rana 0.8 “heart disease
carrier " “high blood pressure
«diabeties

-alergies

0.*

o

-description

Simplifying Class Diagrams

® Fully populated class diagrams of real-world system
can be difficult to understand

¢ Common ways of simplifying class diagrams:
® Show only concrete classes
® The view mechanism shows a subset of classes

® Packages show aggregations of classes (or any elements
in UML)

Object Diagrams

¢ (Class diagrams with instantiated classes

® Example: instead of a Doctor class, create an actual
doctor, say Dr. Smith

® Place values into each attribute

® Used to discover additional attributes, relationships
and/or operations or those that are misplaced

Example Object Diagram

-lastname
firstname
-address
-phone
-birthdate
.jay

il

[]

-amount

-insurance carrier

+make appointment)

+calculate last visit])

+change status()

+provide medical history(} ¥

0.. 0. jx 0.+ assignedTo » 1.* -
+primary gl
iI'ISU_lEI'lOE +cancel without notice()
carrier
suffers » -
-name

lastname = Smith
firstname = Jane
address = Doctor's Clinic
phone = 999-999-9999
birthdate : 12/12/64
fage =48

time = 3:00
date = 7/7/2012
reason = Pain in Meck

lastname = Doe
firstname = John

address = 1000 Main 5t

phone = 555-555-5555
birthdate = 01/01,/72

fage=40

amount = 0.00

insurance carrier = JD Health Ins

name = Muscle Pain

/ Steps to Structural Models

1. Create CRC Cards

2. Review CRC Cards & identify missing objects,
attributes, operations and/or relationships

3. Role-play the CRC cards—Ilook for breakdowns &
correct; create new cards as necessary

4. Create the class diagram

5. Review the class diagram—remove unnecessary
classes, attributes, operations and/or relationships

6. Incorporate patterns
/. Review and validate the model

NNi Wiom, Tegarde

Veritying & Validating the
Model

® Analyst presents to developers & users
® Walks through the model
® Provides explanations & reasoning behind each class

® Rules
1. Each CRC card is associated with a class

2. Responsibilities on the front of the card are included as
operations on the class diagram

3. Collaborators on the front of the card imply a relationship
on the back of the card

4. Attributes on the back of the card are listed as attributes
on the class diagram

NNi Wiom, Tegarde

Rules for Validating &
Veritying the Model (cont.)

5. Attributes on the back of the CRC card each have a
data type (e.g., salary implies a number format)

6. Relationships on the back of the card must be properly
depicted on the class diagram
a) Aggregation/Association
b) Multiplicity

/. Association classes are used only to include attributes
that describe a relationship

NNi Wiom, Tegarde

Summary

Structural Models
CRC Cards

Class Diagrams

Creating CRC Cards and Class Diagrams

